Bayesian Matrix Factorization with Non-Random Missing Data using Informative Gaussian Process Priors and Soft Evidences
نویسندگان
چکیده
We propose an extended Bayesian matrix factorization method, which can incorporate multiple sources of side information, combine multiple a priori estimates for the missing data and integrates a flexible missing not at random submodel. The model is formalized as probabilistic graphical model and a corresponding Gibbs sampling scheme is derived to perform unrestricted inference. We discuss the application of the method for completing drug–target interaction matrices, also discussing specialties in this domain. Using real-world drug–target interaction data, the performance of the method is compared against both a general Bayesian matrix factorization method and a specific one developed for drug–target interaction prediction. Results demonstrate the advantages of the extended model.
منابع مشابه
Theoretical Analysis of Bayesian Matrix Factorization
Recently, variational Bayesian (VB) techniques have been applied to probabilistic matrix factorization and shown to perform very well in experiments. In this paper, we theoretically elucidate properties of the VB matrix factorization (VBMF) method. Through finite-sample analysis of the VBMF estimator, we show that two types of shrinkage factors exist in the VBMF estimator: the positive-part Jam...
متن کاملBayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملLinearly constrained Bayesian matrix factorization for blind source separation
We present a general Bayesian approach to probabilistic matrix factorization subject to linear constraints. The approach is based on a Gaussian observation model and Gaussian priors with bilinear equality and inequality constraints. We present an efficient Markov chain Monte Carlo inference procedure based on Gibbs sampling. Special cases of the proposed model are Bayesian formulations of nonne...
متن کاملKernelized Probabilistic Matrix Factorization: Exploiting Graphs and Side Information
We propose a new matrix completion algorithm— Kernelized Probabilistic Matrix Factorization (KPMF), which effectively incorporates external side information into the matrix factorization process. Unlike Probabilistic Matrix Factorization (PMF) [14], which assumes an independent latent vector for each row (and each column) with Gaussian priors, KMPF works with latent vectors spanning all rows (a...
متن کاملNonnegative Matrix Factorization with Gaussian Process Priors
We present a general method for including prior knowledge in a nonnegative matrix factorization (NMF), based on Gaussian process priors. We assume that the nonnegative factors in the NMF are linked by a strictly increasing function to an underlying Gaussian process specified by its covariance function. This allows us to find NMF decompositions that agree with our prior knowledge of the distribu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016